B-III Analysis IV Midterm examination 21-02-2017.

Answer all the 8 questions. Each question is worth 5 points.

If you are using any result proved in the class, you need to state it correctly.

- 1. Let (X, d) and (Y, ρ) be metric spaces. On the product space $X \times Y$, consider the function $r((x_1, y_1), (x_2, y_2)) = \sqrt{d(x_1, x_2)^2 + \rho(y_1, y_2)^2}$. Show that r is a metric.
- 2. Let (X,d) be a metric space and let $A \subset X$ be a compact set with more than 2 points. Show that there exists $a, b \in A$ such that the diameter of A, dia(A) = d(a, b).
- Show that the set of irrational numbers with the usual metric is a separable metric space.
- 4. Let (X, d) be a complete metric space. Let $A \subset X$ be a totally bounded set. Show that \overline{A} is a compact set.
- 5. Let (X,d) be a compact metric space. Let $\{U_{\alpha}\}_{{\alpha}\in\Delta}$ be a family of open sets such that $X=\cup_{{\alpha}\in\Delta}U_{\alpha}$. Give detailed proof to show that there is a countable set $A\subset\Delta$ such that $X=\cup_{{\alpha}\in A}U_{\alpha}$.
- 6. Let $\mathcal{F} = \{f \in C([0,1]) : \sup_{t \in [0,1]} |f(t)| \le 1\}$. Show that \mathcal{F} is not an equicontinuous set.
- 7. Give an example with all the details, of metric spaces (X, d) and (Y, ρ) and a uniformly continuous map $f: X \to Y$ for which there does not exist a 0 < c < 1 so that $\rho(f(x_1), f(x_2)) \le cd(x_1, x_2)$ for all $x_1, x_2 \in X$.
- 8. Let $M = \{f \in C([0,1]) : f(0) = 0\}$. Let $\epsilon > 0$. Show that there is a polynomial p with p(0) = 0 and $\sup_{t \in [0,1]} |f(t) p(t)| \le \epsilon$.